

ELIZADE UNIVERSITY, ILARA-MOKIN, NIGERIA

FACULTY: BASIC & APPLIED SCIENCES

DEPARTMENT: BIOLOGICAL SCIENCES

FIRST SEMESTER EXAMINATION

2018/2019 ACADEMIC SESSION

COURSE CODE: E	MT 303		
COURSE TITLE: N	METHODS IN ENVIRONMENTAL ANALYSIS	II	
DURATION:	2 HOURS		HOD's SIGNATURE
NAME:		••••••	
MAT. No:	•••••••••••••••••••••••••••••••••••••••	•	

INSTRUCTION: ANSWER FOUR (4) QUESTIONS IN ALL

Attempt any four (4) questions in all

- 1. (a) Briefly describe the preparation of a liquid sample for infra-red spectroscopy
 - (b) What is the importance of the fingerprint region in infrared spectrum?
 - (c) Draw a schematic diagram of Fourier transform infrared spectrophotometer?
 - (d) What are the applications of Infra-red spectroscopy?
 - (e) Infra-red region of the EMS is divided into three regions, list the regions (with their ranges) and which of the regions is the most analytically useful.
- 2. (a) What do you understand by the terms Electromagnetic Radiation (EMR) and Electromagnetic Spectrum (EMS)
 - (b) Explain the principle of absorption spectroscopy.
 - (c) List the three types of energy changes accompanying absorption of EMR and explain any one.
 - (d) Explain the microwave region of the electromagnetic spectrum.
 - (e) What are the qualities of an ideal solvent for UV/VIS spectrophotometry?
- 3. (a) Define Beer-Lambert's law and list the deviations from Beer-Lamberts law.
 - (b) What are Chromophores and Auxochromes? Give two examples in each case.
 - (c) List three limitations and two applications of Flame Atomic Emission Spectrophotometry.
 - (d) What are Bathochromic and Hypochromic shifts?
 - (e) A molecule with a vibrational quantum number of 6 having a bond fundamental vibrational frequency of 2.42 Hertz. Calculate the energy of the vibrational mode.
- 4. (a) Describe the techniques involved in photometric titration.
 - (b) Differentiate between circular dichroism and optical rotatory dispersion.
- 5. (a) Explain the principles, uses and limitations of flame photometry.
 - (b) Describe the principle of polarimetry.
- 6. (a) What are the applications of Polarimetry?
- (b) Draw the Schematic Instrumentation of Flame Photometry.